A study on MMG sensor using piezoelectric polymer nanofibers by electrospinning

Author:

Abe Rintaro1,Yasuda Koa1,Kanda Takefumi1,Wakimoto Shuichi1,Oka Hisao1

Affiliation:

1. Okayama University Kita‐ku Japan

Abstract

AbstractIn the fields of medical and sports science, it is required to evaluate muscle activity qualitatively and quantitatively. Currently, mechanomyogram (MMG) that can reflect the mechanical activity of muscle fibers is attracting attention. The purpose of this study is to develop a sensor that can measure MMG during exercise. In this study, a small and flexible MMG sensor using P(VDF/TrFE), which is a piezoelectric polymer material, spun into nanofibers by the electrospinning method has been fabricated and evaluated. By the fabricated electrospinning equipment and the obtained fabrication conditions of the nanofibers MMG sensor has been fabricated by using piezoelectric polymer fibers. By using nanofiber nonwoven fabric for the sensor element, the flexible sensor has been realized. In a sound wave reception experiment assuming MMG measurement, the P(VDF/TrFE) nonwoven fabric element showed that the element detected the sound pressure. Additionally, MMG during isometric contraction and pedaling motion has been measured using the fabricated sensor. The results show that the proposed sensor is effective for measuring MMG during exercise.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Networks and Communications,General Physics and Astronomy,Signal Processing

Reference11 articles.

1. Evaluation of muscle contraction process using MMG;Akataki K;BME: Bio Med Engng,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3