Prosthetic heart valves for transcatheter aortic valve replacement

Author:

Hu Xinman1,Li Shifen1,Peng Pai1,Wang Beiduo1,Liu Wenxing1,Dong Xiaofei1,Yang Xiayan2,Karabaliev Miroslav3,Yu Qifeng2,Gao Changyou1ORCID

Affiliation:

1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization International Research Center for Functional Polymers Department of Polymer Science and Engineering Zhejiang University Hangzhou China

2. Shanghai NewMed Medical Technology Co., Ltd Shanghai China

3. Department of Medical Physics, Biophysics and Radiology Faculty of Medicine Trakia University Stara Zagora Bulgaria

Abstract

AbstractTranscatheter aortic valve replacement (TAVR) has the advantages of less trauma and faster postoperative recovery, which has brought the possibility to the elderly patient with valvular heart disease and is gradually replacing surgical aortic valve replacement (SAVR). The interventional valve used in TAVR needs to be compressed and transported through the catheter to the lesion site, and can still recover its original shape, structure and performance. This process requires that the material should be flexible, and the rigid mechanical valves in SAVR are not suitable. Recently, decellularized biological valves have been widely used in clinical practice, but their poor durability causes a limitation for long‐term implantation. Therefore, the anti‐calcification modification of biological valves and the design of new polymeric valves with good biostability have gained considerable attention. This review summarizes the calcification mechanism of biological valves and the research progress in anti‐calcification modification strategies. Besides, the development of new polymeric valves is included, with special attention to representative cases, such as polysiloxane, polytetrafluorethylene, poly(styrene‐block‐isobutylene‐block‐styrene), and polyurethane‐based materials. Finally, the challenges and future perspectives of artificial heart valve materials are discussed.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3