Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications

Author:

Li Zhuo123,Gong Jiacheng14,Lu Shan1234ORCID,Li Xingjun123,Gu Xiaobo15,Xu Jin123,Khan Jawairia Umar6,Jin Dayong6,Chen Xueyuan12345ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian China

2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian China

3. University of Chinese Academy of Sciences Beijing China

4. College of Chemistry and Materials Science Fujian Normal University Fuzhou Fujian China

5. School of Physical Science and Technology ShanghaiTech University Shanghai China

6. Institute for Biomedical Materials & Devices (IBMD) Faculty of Science University of Technology Sydney Sydney New South Wales Australia

Abstract

AbstractPhotothermal lanthanide nanomaterials with unique photophysical properties have been innovatively explored for diagnostics and non‐invasive therapies, and hold great promise for precision theranostics. In this review, we start from the basic principles of excited‐state dynamics and provide a thorough comprehension of the main pathways for photothermal conversion in lanthanide nanocrystals. Aspects influencing the photothermal effect such as lanthanide‐doping concentration, particle size, and crystal structure have been fully discussed. Hybrid strategies for the design of efficient lanthanide‐based photothermal agents, including dye sensitization to break the absorption limit and semiconductor combination to add cross‐relaxation pathways, have also been summarized. Furthermore, we highlight the cutting‐edge applications of photothermal lanthanide nanoplatforms with optical diagnosis and temperature feedback in photothermia‐associated theranostics. Lastly, the current challenges and future efforts for clinical applications are proposed. This review is expected to offer a better understanding of photothermal mechanisms and inspire efforts for designing versatile lanthanide theranostic nanoplatforms.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3