LSTM based deep neural network model of power system stabilizer for power oscillation damping in multimachine system

Author:

Sarkar Devesh Umesh1,Prakash Tapan1ORCID

Affiliation:

1. School of Electrical Engineering Vellore Institute of Technology Vellore India

Abstract

AbstractPower system oscillation is an unavoidable threat to the stability of an interconnected modern power system. The reliable operation of a modern power system is widely related to the dampening of electromechanical low‐frequency oscillations (ELFOs). These ELFOs must be dampened appropriately to maintain the stability and reliability of the system. However, it is relatively difficult to resolve the problem of ELFOs completely with traditional power system stabilizers (PSSs). Consequently, research should be directed towards the development of efficient damping controllers, or PSSs, for power oscillation damping. Motivated from the aforementioned fact, this article presents the design of a proportional integral derivative power system stabilizer (PID‐PSS) via a long short‐term memory neural network (LSTM) based deep neural approach for damping power system oscillations in interconnected power systems. LSTM is used to train the parameters of PID‐PSS. To evaluate the performance of the proposed LSTM based PID‐PSS, diverse test cases under different operating conditions are examined. Further, the performance of the proposed LSTM based PID‐PSS is compared with traditional PSSs through time‐domain simulations. The test cases reveal the desired efficiency achieved by the proposed LSTM based PID‐PSS under diverse loading conditions.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3