A splicing variant of EDS1 from Vitis vinifera forms homodimers but no heterodimers with PAD4

Author:

Voss Martin1,Cseke Leland J.2ORCID,Gassmann Walter2ORCID,Niefind Karsten1ORCID

Affiliation:

1. Department für Chemie, Institut für Biochemie Universität zu Köln Köln Germany

2. Division of Plant Science and Technology, Interdisciplinary Plant Group, CS Bond Life Sciences Center University of Missouri Columbia Missouri USA

Abstract

AbstractEnhanced Disease Susceptibility 1 (EDS1), a key component of microbe‐triggered immunity and effector‐triggered immunity in most higher plants, forms functional heterodimeric complexes with its homologs Phytoalexin Deficient 4 (PAD4) or Senescence‐associated Gene 101 (SAG101). Here, the crystal structure of VvEDS1Nterm, the N‐terminal domain of EDS1 from Vitis vinifera, is reported, representing the first structure of an EDS1 entity beyond the model plant Arabidopsis thaliana. VvEDS1Nterm has an α/β‐hydrolase fold, is similar to the N‐terminal domain of A. thaliana EDS1 and forms stable homodimers in solution as well as in crystals. These VvEDS1Nterm homodimers are spatially incompatible with heterodimers with PAD4 or SAG101, they explain why VvEDS1Nterm does not interact with V. vinifera PAD4 according to gel filtration, and they serve as a guide to develop a plausible, albeit experimentally not verified model of full‐length EDS1. VvEDS1Nterm is a splicing variant comprising two of three exons of the VvEDS1 gene. It originates from a naturally occurring mRNA, in which the first of two introns was removed while the second one containing a stop codon close to the exon/intron border was retained. This is a potential case of intron retention and the first report of this phenomenon in the context of EDS1. Its biological significance has not yet been clarified, nor has the question if a VvEDS1Nterm protein with a specific function can occur under physiological conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3