Affiliation:
1. Department of Information Technology Sri Sivasubramaniya Nadar College of Engineering Kalavakkam India
Abstract
AbstractDementia, an increasingly prevalent neurological disorder with a projected threefold rise globally by 2050, necessitates early detection for effective management. The risk notably increases after age 65. Dementia leads to a progressive decline in cognitive functions, affecting memory, reasoning, and problem‐solving abilities. This decline can impact the individual's ability to perform daily tasks and make decisions, underscoring the crucial importance of timely identification. With the advent of technologies like computer vision and deep learning, the prospect of early detection becomes even more promising. Employing sophisticated algorithms on imaging data, such as positron emission tomography scans, facilitates the recognition of subtle structural brain changes, enabling diagnosis at an earlier stage for potentially more effective interventions. In an experimental study, the Swin transformer algorithm demonstrated superior overall accuracy compared to the vision transformer and convolutional neural network, emphasizing its efficiency. Detecting dementia early is essential for proactive management, personalized care, and implementing preventive measures, ultimately enhancing outcomes for individuals and lessening the overall burden on healthcare systems.