Integrative multi‐omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention‐Deficit/Hyperactivity Disorder

Author:

Hubers Nikki123ORCID,Hagenbeek Fiona A.13,Pool René13,Déjean Sébastien4,Harms Amy C.56,Roetman Peter J.7,van Beijsterveldt Catharina E. M.1,Fanos Vassilios8,Ehli Erik A.9,Vermeiren Robert R. J. M.710,Bartels Meike13,Hottenga Jouke Jan1,Hankemeier Thomas56,van Dongen Jenny123,Boomsma Dorret I.123

Affiliation:

1. Department of Biological Psychology Vrije Universiteit Amsterdam Amsterdam the Netherlands

2. Amsterdam Reproduction & Development (AR&D) Research Institute Amsterdam the Netherlands

3. Amsterdam Public Health Research Institute Amsterdam the Netherlands

4. Toulouse Mathematics Institute, UMR 5219 University of Toulouse, CNRS Toulouse France

5. Division of Analytical Biosciences, Leiden Academic Center for Drug Research Leiden University Leiden the Netherlands

6. The Netherlands Metabolomics Centre Leiden The Netherlands

7. LUMC‐Curium, Department of Child and Adolescent Psychiatry Leiden University Medical Center Leiden the Netherlands

8. Department of Surgical Sciences University of Cagliari and Neonatal Intensive Care Unit Cagliari Italy

9. Avera Institute for Human Genetics Sioux Falls South Dakota USA

10. Youz, Parnassia Group the Netherlands

Abstract

AbstractThe evolving field of multi‐omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non‐transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi‐omics framework to identify biomarkers for Attention‐Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single‐ and next multi‐omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in‐sample prediction through cross‐validation. The multi‐omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out‐of‐sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non‐transmitted PGSs, CpGs, and amino acid levels and show that multi‐omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.

Funder

H2020 European Research Council

Koninklijke Nederlandse Akademie van Wetenschappen

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Seventh Framework Programme

ZonMw

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Genetics (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3