A chance‐constrained tube‐based model predictive control for tracking linear systems using data‐driven uncertainty sets

Author:

Zhang Shulei1ORCID,Jia Runda12,He Dakuo12ORCID,Chu Fei3

Affiliation:

1. School of Information Science & Engineering Northeastern University Shenyang China

2. State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China

3. School of Information and Control Engineering China University of Mining and Technology Xuzhou China

Abstract

AbstractThis article presents a chance‐constrained tube‐based model predictive control (MPC) method for tracking linear time‐invariant systems based on data‐driven uncertainty sets. By defining the terminal admissible set to consider all the possible steady‐states and reformulating the stochastic tube‐based MPC framework, the proposed method can systematically hedge against the impact of uncertainties and ensure tracking for all reachable operating setpoints. To reduce the conservatism of control performance while enlarging the feasible region, a data‐driven polyhedral uncertainty set is constructed by using the principal component analysis technique, which can effectively capture correlations among uncertain variables. Since state constraint violations in a certain probability are allowed, a probability uncertainty set is constructed by using statistic limit and cutting plane methods to formulate a stochastic tube to ensure constraint satisfaction. The recursive feasibility and stability can be guaranteed if the uncertainties are bounded. The effectiveness of the proposed method is verified by numerical examples and tracking problems of a thickening process.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3