Affiliation:
1. Department of Mathematics Numerical Analysis, Optimization and Statistics Laboratory Annaba Algeria
2. Department of Mathematics Laboratory of Mathematics, Dynamics and Modelization Annaba Algeria
3. Department of Mathematics, College of Sciences and Arts in ArRass Qassim University Buraydah Saudi Arabia
Abstract
AbstractThis study aims to investigate the well‐posedness and stability of a thermoelastic Timoshenko system with non‐Fourier heat conduction. Specifically, we analyze the system using the dual‐phase‐lag (DPL) model, which incorporates two thermal relaxation times, and , to model non‐instantaneous heat propagation. Applying the semigroup approach, we demonstrate the existence and uniqueness of the solutions. Subsequently, we introduce a novel stability parameter using the multiplier method. Exponential decay is proven for the case of with . Using Gearhart–Prüss theorem, we show the lack of exponential stability when and . Numerically, we present a fully discrete approximation using the finite element method and the backward Euler scheme, and we provide some numerical simulations to show the discrete energy decay and the behavior of solutions.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献