Relay node selection scheme and deep sleep period for power management in energy‐harvesting wireless sensor networks

Author:

Bengheni Abdelmalek1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Math/CS, Laboratory of Research in Artificial Intelligence and Systems (LRAIS) Ibn Khaldoun University Tiaret Algeria

Abstract

SummaryThis paper presents Relay node selection scheme and Deep sleep period for power management in Energy Harvesting Wireless Sensor Networks (RD‐EHWSN), a new energy‐saving scheme founded on asynchronous duty cycling. RD‐EHWSN reduces sensor node energy consumption and guarantees equilibrium energy use between sensor nodes in WSN with the energy harvesting capacity by adjusting these sensor nodes duty cycles more drastically and deeply by according to the estimated value of its residual energy on the basis of future‐presented harvested energy, and this is done through the use of a new proposed energy threshold policy. RD‐EHWSN also grips the benefit of transmitter initiated using the low power listening (LPL) technique with short preamble messages and uses a new relay node selection procedure to achieve the load balancing in WSN. We implemented RD‐EHWSN by using OMNeT++/MiXiM. For evaluation, we compared it with PS‐EHWSN, under multiple concurrent multihop traffic flows scenarios and scenarios in which nodes can harvest different energy harvesting rate. In all experiments, RD‐EHWSN significantly outperformed the PS‐EHWSN scheme; the results of simulation demonstrate that our scheme enhances the general yielding of WSN thru lessening the energy consumption and the mean latency, as well as raising the packet delivery ratio and the throughput. Moreover, RD‐EHWSN improves the WSN lifetime and ensures it operates in good condition in the case where the energy harvesting rate is lower by comparing it with the PS‐EHWSN scheme.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EDCS: Efficient data collection systems by using bundling technology for effective communications;AEU - International Journal of Electronics and Communications;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3