A semi‐empirical approach for determining the number density and void fraction of acoustic cavitation bubbles in sono‐reactors

Author:

Dehane Aissa1ORCID,Merouani Slimane1

Affiliation:

1. Laboratory of Environmental Process Engineering, Department of Chemical Engineering Faculty of Process Engineering University Constantine 3 Salah Boubnider Constantine Algeria

Abstract

AbstractA new semi‐empirical technic has been established relying on the linkage between the chemistry in the bulk liquid and that taking place in the acoustic cavitation bubble. The open‐source COPASI software has been used for the optimization of number density according to the total yield of a single bubble and the fitting of the experimental yield of hydrogen peroxide in the sonicated solution. It was observed that the number density is increased with the rise of ultrasound frequency from 200 to 1140 kHz, independently of the saturating gas nature (O2, Ar or air). Within this range of wave frequencies, i.e. from 200 to 1140 kHz, the number of active bubbles goes up from 9.35 × 107 to 3.65 × 1015 L−1 s−1. On the other side, it has been demonstrated that the number density obtained under air atmosphere is greater than that resulting either under argon or oxygen‐saturating gas. Interestingly, with respect to the saturating gas nature (O2, Ar, air) and the range of ultrasound frequency (200–1140 kHz), it was observed that the increase of number density was not necessarily accompanied by a proportional increase of void fraction (total volume of bubbles).

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasonic destruction of surfactants;Ultrasonics Sonochemistry;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3