Structure and Sequence of the Human Fast Skeletal Troponin T (TNNT3) Gene: Insight Into the Evolution of the Gene and the Origin of the Developmentally Regulated Isoforms

Author:

Stefancsik Raymund123,Randall Jeffrey D.124,Mao Chengjian15,Sarkar Satyapriya126

Affiliation:

1. Department of Anatomy and Cellular Biology, Tufts University, Health Science Campus, 136 Harrison Avenue, M&V 519, Boston, MA 02111, USA

2. Graduate Program in Cell, Molecular and Developmental Biology, Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA

3. Veterinary Medical Research Institute of the Hungarian Academy of Sciences, Hungaria krt 21, Budapest H-1143, Hungary

4. U.S. Genomics, Woburn, MA 0181, USA

5. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA

6. Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, Boston, MA 02111, USA

Abstract

We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19 exons and 18 introns. Eleven of these exons, 1–3, 9–15 and 18, are constitutively spliced, whereas exons 4–8 are alternatively spliced. The gene contains an additional subset of developmentally regulated and alternatively spliced exons, including a foetal exon located between exon 8 and 9 and exon 16 or α (adult) and 17 or β (foetal and neonatal). Exon phasing suggests that the majority of the alternatively spliced exons located at the 5′ end of the gene may have evolved as a result of exon shuffling, because they are of the same phase class. In contrast, the 3′ exons encoding an evolutionarily conserved heptad repeat domain, shared by both TnT and troponin I (TnI), may be remnants of an ancient ancestral gene. The sequence of the 5′ flanking region shows that the putative promoter contains motifs including binding sites for MyoD, MEF-2 and several transcription factors which may play a role in transcriptional regulation and tissue-specific expression of TnT. The coding region of TNNT3 exhibits strong similarity to the corresponding rat sequence. However, unlike the rat TnT gene, TNNT3 possesses two repeat regions of CCA and TC. The exclusive presence of these repetitive elements in the human gene indicates divergence in the evolutionary dynamics of mammalian TnT genes. Homologous muscle-specific splicing enhancer motifs are present in the introns upstream and downstream of the foetal exon, and may play a role in the developmental pattern of alternative splicing of the gene. The genomic correlates of TNNT3 are relevant to our understanding of the evolution and regulation of expression of the gene, as well as the structure and function of the protein isoforms. The nucleotide sequence of TNNT3 has been submitted to EMBL/GenBank under Accession No. AF026276.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3