A triaxiality‐dependent fracture model for hot‐rolled sections made of S355 steel

Author:

Kastiza Pelagia1,Skalomenos Konstantinos1,Theofanous Marios1

Affiliation:

1. School of Engineering University of Birmingham Birmingham United Kingdom

Abstract

AbstractFracture at net areas of steel sections often leads to premature failures of steel members, especially in the region of joints (bolted connections). This study develops a fracture model for hot rolled S355 steel for enabling a better understanding of the ultimate behaviour of steel sections through numerical simulations using the general‐purpose finite element software ABAQUS. Monotonic tensile tests are conducted on traditional dog‐bone plate specimens with a uniform cross‐section and notched plate specimens extracted from hot‐rolled I‐beams. Two material thicknesses and three notch radii per thickness are considered thus obtaining equivalent plastic strains at fracture over a wide range of stress triaxialities. The experimental fracture displacement is used as a threshold for the determination of the average stress triaxiality – equivalent strain history at the critical location (fracture initiation) of each plate model. Using regression analysis, an exponential approximation of the fracture locus is proposed to correlate the average stress triaxiality for a given equivalent plastic strain at fracture. The proposed model is then used to predict fracture initiation of unnotched tensile coupons and steel plates with a bolt hole in their centre extracted from the same steel sections. The test results are in good agreement with the numerical predictions thus demonstrating the efficiency of the proposed method.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3