Chalcones bearing nitrogen‐containing heterocyclics as multi‐targeted inhibitors: Design, synthesis, biological evaluation and molecular docking studies

Author:

Sıcak Yusuf1ORCID,Kekeçmuhammed Hüseyin2ORCID,Karaküçük‐İyidoğan Ayşegül2ORCID,Taşkın‐Tok Tuğba23ORCID,Oruç‐Emre Emine Elçin2ORCID,Öztürk Mehmet4ORCID

Affiliation:

1. Department of Medicinal and Aromatic Plants, Köyceğiz Vocational School Muğla Sıtkı Koçman University Muğla Turkey

2. Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey

3. Institute of Health Sciences, Department of Bioinformatics and Computational Biology Gaziantep University Gaziantep Turkey

4. Department of Chemistry, Faculty of Sciences Muğla Sıtkı Koçman University Muğla Turkey

Abstract

AbstractIn this work, a series of chalcones (1a–d, 2a–d, 3a–d, 4a–d, and 5a–d) were designed and synthesized by Claisen–Schmidt condensation. Also, their chemical structures were elucidated using UV–Vis, FT IR, 1H NMR, 13C NMR, MS spectral data, and elemental analyses. Subsequently, the anticholinesterase, tyrosinase, urease inhibitory activities and antioxidant activities of all chalcones were evaluated. The inhibitory potential of all chalcones in terms of IC50 value was observed to range from 7.18 ± 0.43 to 29.62 ± 0.30 μM against BChE by comparing with Galantamine (IC50 46.06 ± 0.10 μM) as a reference drug. Also, compounds 2c, 3c, 4c, 4b, and 4d exhibited high anticholinesterase activity against both AChE and BChE enzymes. The tyrosinase inhibitory activity results revealed that three compounds (IC50 1.75 ± 0.83 μM for 2b, IC50 2.24 ± 0.11 μM for 3b, and IC50 1.90 ± 0.64 μM for 4b) displayed good inhibitory activity against tyrosinase compared with kojic acid (IC50 0.64 ± 0.12 μM). In addition, other different three chalcones (IC50 22.34 ± 0.25 μM for 2c, IC50 20.98 ± 0.08 μM for 3c, and IC50 18.26 ± 0.13 μM for 4c) showed excellent inhibitory activity against the urease by comparing with thiourea (IC50 23.08 ± 0.19 μM). Compounds 3c and 4c showed the best potency in all antioxidant activity tests. In light of these findings, the structure–activity relationship for compounds was also described. Furthermore, molecular modeling studies, including molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and pharmacophore analyses of compounds, gave important information about the interactions and drug‐likeness properties. As a result, all chalcones exhibited suitable ADMET findings, predicting good oral bioavailability.

Publisher

Wiley

Subject

Molecular Biology,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3