Susceptibility to polarization type potential induced degradation in commercial bifacial p‐PERC PV modules

Author:

Mahmood Farrukh ibne1ORCID,Li Fang1ORCID,Hacke Peter2ORCID,Molto Cécile3,Colvin Dylan3,Seigneur Hubert3ORCID,TamizhMani Govindasamy1

Affiliation:

1. Photovoltaic Reliability Laboratory Arizona State University (ASU‐PRL) Mesa AZ USA

2. Reliability and System Performance National Renewable Energy Laboratory (NREL) Golden CO USA

3. Florida Solar Energy Center University of Central Florida (UCF‐FSEC) Cocoa FL USA

Abstract

AbstractPotential induced degradation (PID) is a reliability issue affecting photovoltaic (PV) modules, mainly when PV strings operate under high voltages in hot/humid conditions. Polarization‐type PID (PID‐p) has been known to decrease module performance quickly. PID‐p can be reduced or recovered under the light in some cases, but this effect, as expected, would be less pronounced on the rear side of bifacial PV modules receiving lower irradiance. As bifacial PV modules are projected to dominate the PV market within the next 10 years, it is crucial to understand the PID‐p issue in bifacial modules better. In this study, we performed indoor PID testing to induce PID‐p on 14 commercial bifacial p‐PERC modules with three different module constructions from three manufacturers. Four rounds (+ve and −ve polarities for front and rear sides) of PID testing are done at 25°C, 54% relative humidity (RH) for 168 h using the aluminum foil method. Each module side (front cell side and back cell side) is tested individually under both negative and positive voltage bias. The results show that the highest degradation of 32% in maximum power (Pmax) at standard test conditions (1000 W/m2) and 51% at low irradiance (200 W/m2) has been observed in some cases. Recovery under sunlight is also done, and outcomes show a near‐complete recovery in Pmax. This study presents an extensive experimental methodology and a detailed analysis to systematically and simultaneously/sequentially evaluate multiple construction types of bifacial modules to the PID‐p susceptibility and recovery.

Funder

U.S. Department of Energy

Office of Energy Efficiency and Renewable Energy

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3