Ingestion and respiration rates of a common coastal mysid respond differently to diurnal temperature fluctuation

Author:

Brinkop Konstanze1ORCID,Wienhausen Laura M.1ORCID,Sperfeld Erik1ORCID,Wacker Alexander1ORCID

Affiliation:

1. Animal Ecology, Zoological Institute and Museum University of Greifswald Greifswald Germany

Abstract

AbstractAnimals face strong environmental variability even on short time scales particularly in shallow coastal habitats, forcing them to permanently adjust their metabolism. Respiration rates of aquatic ectotherms are directly influenced by water temperature, whereas ingestion rates might additionally be influenced by behavior. We aim to understand how respiration and ingestion rates of an aquatic invertebrate respond to changing temperature during a diurnal thermal fluctuation cycle and how both processes are related. We studied the benthopelagic mysid Neomysis integer as an important food web component of coastal ecosystems. Mysids were collected at the southern Baltic Sea coast and exposed in the laboratory to either constant temperature of 15°C or daily temperature fluctuation of 15 ± 5°C. Short‐term (1–2 h) respiration and ingestion rates were measured at four equidistant time points within 24 h and did not differ among time points at constant temperature, but differed among time points in the fluctuating treatment. Respiration was highest at the thermal maximum and lowest at the thermal minimum. Ingestion rates showed the opposite pattern under fluctuation, likely due to differences in underlying thermal performance curves. When temperature transited the average, the direction of temperature change influenced the animals' response in respiration and ingestion rates differently. Our results suggest that respiration is not only instantaneously affected by temperature, but also influenced by the previously experienced direction of thermal change. Our experiment, using an important non‐model organism, delivered new insights on the relationship between the crucial organismal processes ingestion and respiration under thermal variability.

Funder

Universität Greifswald

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3