Magnetic‐Based Strategies for Regenerative Medicine and Tissue Engineering

Author:

Santos Lúcia F.1ORCID,Silva Ana S.1,Mano João F.1ORCID

Affiliation:

1. Department of Chemistry CICECO–Aveiro Institute of Materials University of Aveiro Aveiro 3810‐193 Portugal

Abstract

AbstractThe fabrication of biological substitutes to repair, replace, or enhance tissue‐ and organ‐level functions is a long‐sought goal of tissue engineering (TE). However, the clinical translation of TE is hindered by several challenges, including the lack of suitable mechanical, chemical, and biological properties in one biomaterial, and the inability to generate large, vascularized tissues with a complex structure of native tissues. Over the past decade, a new generation of “smart” materials has revolutionized the conventional medical field, transforming TE into a more accurate and sophisticated concept. At the vanguard of scientific development, magnetic nanoparticles (MNPs) have garnered extensive attention owing to their significant potential in various biomedical applications owing to their inherent properties such as biocompatibility and rapid remote response to magnetic fields. Therefore, to develop functional tissue replacements, magnetic force‐based TE (Mag‐TE) has emerged as an alternative to conventional TE strategies, allowing for the fabrication and real‐time monitoring of tissues engineered in vitro. This review addresses the recent studies on the use of MNPs for TE, emphasizing the in vitro, in vivo, and clinical applications. Future perspectives of Mag‐TE in the fields of TE and regenerative medicine are also discussed.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3