Affiliation:
1. Department of Orthopaedics, Nanjing First Hospital Nanjing Medical University 68 Changle Road Nanjing 210006 P. R. China
2. Department of Endocrinology, Nanjing First Hospital Nanjing Medical University Nanjing 210006 P. R. China
3. State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
Abstract
AbstractDiabetic wounds are more likely to develop into complex and severe chronic wounds. The objective of this study is to develop and assess a reactive oxygen species (ROS)‐responsive multifunctional injectable hydrogel for the purpose of diabetic wound healing. A multifunctional hydrogel (HA@Cur@Ag) is successfully synthesized with dual antioxidant, antibacterial, and anti‐inflammatory properties by crosslinking thiol hyaluronic acid (SH‐HA) and disulfide‐bonded hyperbranched polyethylene glycol (HB‐PBHE) through Michael addition; while, incorporating curcumin liposomes and silver nanoparticles (AgNPs). The HA@Cur@Ag hydrogel exhibits favorable biocompatibility, degradability, and injectivity. The outcomes of in vitro and in vivo experiments demonstrate that the hydrogel can effectively be loaded with and release curcumin liposomes, as well as silver ions, thereby facilitating diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti‐inflammatory effects, and the promotion of angiogenesis. Transcriptome sequencing reveals that the HA@Cur@Ag hydrogel effectively suppresses the activation of the tumour necrosis factor (TNF)/nuclear factor κB (NF‐κB) pathway to ameliorate oxidative stress and inflammation in diabetic wounds. These findings suggest that this ROS‐responsive multifunctional injectable hydrogel, which possesses the ability to precisely coordinate and integrate intricate biological and molecular processes involved in wound healing, exhibits notable potential for expediting diabetic wound healing.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献