Bio‐Inspired Micro‐ and Nano‐Scale Surface Features Produced by Femtosecond Laser‐Texturing Enhance TiZr‐Implant Osseointegration

Author:

Lackington William Arthur1ORCID,Bellon Benjamin23,Guimond Stefanie1,Schweizer Peter4ORCID,Cancellieri Claudia5ORCID,Ambeza Antoine6,Chopard‐Lallier Anne‐Lise7,Pippenger Benjamin28ORCID,Armutlulu Andac2ORCID,Maeder Xavier4ORCID,Schmutz Patrik5,Rottmar Markus1ORCID

Affiliation:

1. Biointerfaces Lab Empa, Swiss Federal Laboratories for Materials Science and Technology St. Gallen 9014 Switzerland

2. Institut Straumann AG Basel 4052 Switzerland

3. Faculty of Medicine and Health Technology University of Tampere Tampere 33720 Finland

4. Mechanics of Materials & Nanostructures Lab Empa, Swiss Federal Laboratories for Materials Science and Technology Thun 3603 Switzerland

5. Joining Technologies & Corrosion Lab Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

6. Laser TSE GF Machining Solutions SA Geneva 1242 Switzerland

7. Anthogyr SAS Sallanches 74700 France

8. Department of Periodontology University of Bern Bern 3010 Switzerland

Abstract

AbstractSurface design plays a critical role in determining the integration of dental implants with bone tissue. Femtosecond laser‐texturing has emerged as a breakthrough technology offering excellent uniformity and reproducibility in implant surface features. However, when compared to state‐of‐the‐art sandblasted and acid‐etched surfaces, laser‐textured surface designs typically underperform in terms of osseointegration. This study investigates the capacity of a bio‐inspired femtosecond laser‐textured surface design to enhance osseointegration compared to state‐of‐the‐art sandblasted & acid‐etched surfaces. Laser‐texturing facilitates the production of an organized trabeculae‐like microarchitecture with superimposed nano‐scale laser‐induced periodic surface structures on both 2D and 3D samples of titanium‐zirconium‐alloy. Following a boiling treatment to modify the surface chemistry, improving wettability to a contact angle of 10°, laser‐textured surfaces enhance fibrin network formation when in contact with human whole blood, comparable to state‐of‐the‐art surfaces. In vitro experiments demonstrate that laser‐textured surfaces significantly outperform state‐of‐the‐art surfaces with a 2.5‐fold higher level of mineralization by bone progenitor cells after 28 days of culture. Furthermore, in vivo evaluations reveal superior biomechanical integration of laser‐textured surfaces after 28 days of implantation. Notably, during abiological pull‐out tests, laser‐textured surfaces exhibit comparable performance, suggesting that the observed enhanced osseointegration is primarily driven by the biological response to the surface.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3