Highly Tough and Biodegradable Poly(ethylene glycol)‐Based Bioadhesives for Large‐Scaled Liver Injury Hemostasis and Tissue Regeneration

Author:

Huang Yiqian1ORCID,Jing Wei1,Zeng Jianping2,Xue Yunxia1,Zhang Yan1,Yu Xueqiao1,Wei Pengfei1,Zhao Bo1,Dong Jiahong2

Affiliation:

1. Beijing Biosis Healing Biological Technology Co., Ltd Beijing 102600 China

2. Hepatopancreatobiliary Center Beijing Tsinghua Changgung Hospital School of Clinical Medicine Tsinghua University Beijing 102218 China

Abstract

AbstractConventional tissue adhesives face challenges for hemostasis and tissue regeneration in large‐scaled hemorrhage and capillary hypobaric bleeding due to weak adhesion, and inability to degrade at specific sites. Herein, convenient and injectable poly(ethylene glycol) (PEG)‐based adhesives are developed to address the issues for liver hemostasis. The PEG‐bioadhesives are composed of tetra‐armed PEG succinimide glutarate (PEG‐SG), tetra‐armed PEG amine (PEG‐NH2), and tri‐lysine. By mixing the components, the PEG‐bioadhesives can be rapidly formulated for use of liver bleeding closure in hepatectomy. The PEG‐bioadhesives also possess mechanical compliance to native tissues (elastic modulus ≈40 kPa) and tough tissue adhesion (≈28 kPa), which enables sufficient adhering to the injured tissues and promotes liver regeneration with the PEG‐bioadhesive degradation. In both rats of liver injury and pigs of large‐scaled hepatic hemorrhage, the PEG‐bioadhesives show effective hemostasis with superior blood loss than conventional tissue adhesives. Due to biocompatibility and degradability, the PEG‐bioadhesive is advantageous for liver regeneration, while commercial adhesives (e.g., N‐octyl cyanoacrylate) display adhesion failure and limited liver reconstructions. These PEG‐bioadhesive components are FDA‐approved, and demonstrate excellent adhesion to various tissues not only for liver hemostasis, it is a promising candidate in biomedical translations and clinical applications.

Funder

Chinese Academy of Medical Sciences

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3