Degradable Antimicrobial Ureteral Stent Construction with Silver@graphdiyne Nanocomposite

Author:

Zhang Yang1,Wang Lizhen1ORCID,Wang Yan2,Li Linhao1,Zhou Jin1,Dou Dandan1,Wu Zebin1,Yu Lu1,Fan Yubo1

Affiliation:

1. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100191 China

2. Department of Biomedical Engineering Faculty of Engineering The Hong Kong Polytechnic University Hong Kong 999077 China

Abstract

AbstractIn the surgical treatment of urinary diseases, ureteral stents are commonly used interventional medical devices. Although polymer ureteral stents with polyurethane as the main constituent are widely used in the clinic, the need for secondary surgery to remove them and their propensity to cause bacterial infections greatly limit their effectiveness. To satisfy clinical requirements, an electrospinning‐based strategy to fabricate PLGA ureteral stents with silver@graphdiyne is innovated. Silver (Ag) nanoparticles are uniformly loaded on the surface of graphdiyne (GDY) flakes. It is found that the incorporation of Ag nanoparticles into GDY markedly increases their antibacterial properties. Subsequently, the synthesized and purified Ag@GDY is homogeneously blended with poly(lactic‐co‐glycolic acid) (PLGA) as an antimicrobial agent, and electrospinning along with high‐speed collectors is used to make tubular stents. The antibacterial effect of Ag@GDY and the porous microstructure of the stents can effectively prevent bacterial biofilm formation. Furthermore, the stents gradually decrease in toughness but increase in strength during the degradation process. The cellular and subcutaneous implantation experiments demonstrate the moderate biocompatibility of the stents. In summary, considering these performance characteristics and the technical feasibility of the approach taken, this study opens new possibilities for the design and application of biodegradable ureteral stents.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3