Tailored Beta‐Lapachone Nanomedicines for Cancer‐Specific Therapy

Author:

Li Yaru1,Feng Meiyu1,Guo Tao2,Wang Zheng1,Zhao Yanjun1ORCID

Affiliation:

1. School of Pharmaceutical Science and Technology Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 China

2. Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital Tianjin 300120 China

Abstract

AbstractNanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone‐containing compound, beta‐lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP‐mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton‐like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer‐specific LAP therapy and speed up its clinical translation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3