Affiliation:
1. Department of Spine Surgery The Third Xiangya Hospital Central South University Changsha Hunan 410013 P. R. China
2. Department of Cell Biology School of Life Sciences Central South University Changsha Hunan 410017 P. R. China
3. Medical Science Research Center Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
4. State Key Laboratory of Precision Manufacturing for Extreme Service Performance College of Mechanical and Electrical Engineering Central South University Changsha Hunan 410083 P. R. China
Abstract
AbstractThe rapid multiplication of residual tumor cells and poor reconstruction quality of new bone are considered the major challenges in the postoperative treatment of osteosarcoma. It is a promising candidate for composite bone scaffold which combines photothermal therapy (PTT) and bone regeneration induction for the local treatment of osteosarcoma. However, it is inevitable to damage the normal tissues around the tumor due to the hyperthermia of PTT, while mild heat therapy shows a limited effect on antitumor treatment as the damage can be easily repaired by stress‐induced heat shock proteins (HSP). This study reports a new type of single‐atom Cu nanozyme‐loaded bone scaffolds, which exhibit exceptional photothermal conversion properties as well as peroxidase and glutathione oxidase mimicking activities in vitro experiments. This leads to lipid peroxidation (LPO) and reactive oxygen species (ROS) upregulation, ultimately causing ferroptosis. The accumulation of LPO and ROS also contributes to HSP70 inactivation, maximizing PTT efficiency against tumors at an appropriate therapeutic temperature and minimizing the damage to surrounding normal tissues. Further, the bone scaffold promotes bone regeneration via a continuous release of bioactive ions (Ca2+, P5+, Si4+, and Cu2+). The results of in vivo experiments reveal that scaffolds inhibit tumor growth and promote bone repair.
Funder
Fundamental Research Funds for Central Universities of the Central South University
Natural Science Foundation of Hunan Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献