Self‐Assembled Carrier‐Free Nanodrugs for Starvation Therapy‐Amplified Photodynamic Therapy of Cancer

Author:

Zhang Dong‐Yang1ORCID,Liang Yuqin1,Wang Mingcheng1ORCID,Younis Muhammad Rizwan2,Yi Huixi1,Zhao Xiaoya1,Chang Jishuo1,Zheng Yue3,Guo Weisheng1,Yu Xiyong1

Affiliation:

1. Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease the Fifth Affiliated Hospital and School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 China

2. Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen 518060 China

3. Breast Tumor Center Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510275 China

Abstract

AbstractTraditional starvation treatment strategies, which involve glucose oxidase and drug‐induced thrombi, often suffer from aggravated tumor hypoxia and have failed to improve antitumor efficacy in combination with oxygen‐dependent photodynamic therapy (PDT). Herein, glucose transporter 1 inhibitor genistein (Gen) and photosensitizer chlorin e6 (Ce6) are integrated to construct carrier‐free self‐assembled nanoparticles defined as GC NPs, for starvation therapy‐amplified PDT of tumor. GC NPs with regular morphology and stability are screened out by component adjustment, while the function of each component is preserved. On the one hand, Gen released from GC NPs can cut off tumor glucose uptake by inhibiting the glucose transporter 1 to restrict tumor growth, achieving starvation therapy. On the other hand, they are able to decrease the amount of oxygen consumed by tumor respiration and amplify the therapeutic effect of PDT. In vitro and in vivo experiments verify the excellent synergistic antitumor therapeutic efficacy of GC NPs without any apparent toxicity. Moreover, fluorescence and photoacoustic imaging provide guidance for in vivo PDT, demonstrating the excellent tumor enrichment efficiency of GC NPs. It is believed that this starvation therapy‐amplified PDT strategy by carrier‐free self‐assembled GC NPs holds promising clinical prospects.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3