Affiliation:
1. Institute for Molecules and Materials Radboud University Heyendaalseweg 135 Nijmegen 6525 AJ The Netherlands
2. Department of Urology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein Zuid 28 Nijmegen 6525 GA The Netherlands
3. Department of Obstetrics and Gynecology Amsterdam University Medical Center location AMC, Meibergdreef 9 Amsterdam 1105 AZ The Netherlands
4. Amsterdam Reproduction and Development Amsterdam University Medical Center location AMC, Meibergdreef 9 Amsterdam 1105 AZ The Netherlands
Abstract
AbstractWith its involvement in cell proliferation, migration and differentiation basic fibroblast growth factor (bFGF) has great potential for tissue engineering purposes. So far, however, clinical translation of soluble bFGF‐based therapies is unsuccessful, because the required effective doses are often supraphysiological, which may cause adverse effects. An effective solution is growth factor immobilization, whereby bFGF retains its bioactivity at increased efficacy. Studied carriers include films, solid scaffolds, and particles, as well as natural and synthetic hydrogels. However, these synthetic hydrogels poorly resemble the characteristics of the native extracellular matrix (ECM). In this work, bFGF is covalently conjugated to the synthetic, but highly biocompatible, polyisocyanide‐based hydrogel (PIC‐bFGF), which closely mimics the architecture and mechanical properties of the ECM. The growth factor conjugation protocol is straightforward and readily extrapolated to other growth factors or proteins. The PIC‐bFGF hydrogel shows a prolonged bioactivity up to 4 weeks although no clear effects on the ECM metabolism are observed. Beyond the future potential of the PIC‐bFGF hydrogel toward various tissue engineering applications, this work underlines that simple biological conjugation procedures are a powerful strategy to induce additional bioactivity in 3D synthetic cell culture matrices.
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献