Polyglycerol‐Based Biomedical Matrix for Immunomagnetic Circulating Tumor Cell Isolation and Their Expansion into Tumor Spheroids for Drug Screening

Author:

Tang Peng1,Thongrom Boonya1,Arora Smriti1ORCID,Haag Rainer1ORCID

Affiliation:

1. Institute for Chemistry and Biochemistry Freie Universität Berlin Takustr. 3 14195 Berlin Germany

Abstract

AbstractCirculating tumor cells (CTCs) are established as distinct cancer biomarkers for diagnosis, as preclinical models, and therapeutic targets. Their use as preclinical models is limited owing to low purity after isolation and the lack of effective techniques to create 3D cultures that accurately mimic in vivo conditions. Herein, a two‐component system for detecting, isolating, and expanding CTCs to generate multicellular tumor spheroids that mimic the physiology and microenvironment of the diseased organ is proposed. First, an antifouling biointerface on magnetic beads is fabricated by adding a bioinert polymer layer and conjugation of biospecific ligands to isolate cancer cells, dramatically enhancing the selectivity and purity of the isolated cancer cells. Next, the isolated cells are encapsulated into self‐degradable hydrogels synthesized using a thiol‐click approach. The hydrogels are mechanochemically tuned to enable tumor spheroid growth to a size greater than 300 µm and to further release the grown spheroids while retaining their tumor‐like characteristics. In addition, drug treatment highlights the need for 3D culture environments rather than conventional 2D culture. The designed biomedical matrix shows potential as a universal method to ensure mimicry of in vivo tumor characteristics in individual patients and to improve the predictability of preclinical screening of personalized therapeutics.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3