Affiliation:
1. Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
2. Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430034 P. R. China
3. College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
4. Zhejiang Institute China University of Geosciences Hangzhou 311305 P. R. China
Abstract
AbstractSurgery is a traditional tumor treatment, and immunotherapy can reduce the postoperative recurrence of tumors. However, the intrinsic limits of low responsive rate and non‐tumor specificity of immunotherapy agents are still insufficient to address therapeutic demands. Herein, the macrophages membrane camouflaged nanoparticles (NPs), named M@PFC, consisting of the aggregation‐induced emission photosensitizer (PF3‐PPh3) and immune adjuvant (CpG), are reported. As the protein on the membrane interacts with the vascular cell adhesion molecule 1 (VCAM‐1) of cancer cells, M@PFC efficiently transports CpG to the tumor. Meanwhile, M@PFC can evade clearance by the immune system and prolong the circulation time in vivo; thus, enhancing their accumulation in tumors. PF3‐PPh3 promotes high production of reactive oxygen species (ROS) and triggers immune cell death (ICD) in tumor cells under light exposure. Importantly, CpG enrichment in tumors can stimulate tumor cells to produce immune factors to assist in enhancing ICD effects. The synergistic effect combining the PDT properties of the aggregation‐induced emission (AIE)‐active photosensitizer and immunotherapy properties of CpG significantly delays tumor recurrence after surgery. In conclusion, this strategy achieves the synergistic activation of the immune system for anti‐tumor activity, providing a novel paradigm for the development of therapeutic nanodrugs to delay postoperative tumor recurrence.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献