Evaluation of Reactive Oxygen Species Scavenging of Polydopamine with Different Nanostructures

Author:

Zheng Yuyi1,Chen Xiaojie1,Zhang Qi1,Yang Lin123,Chen Qi1,Chen Zhong1,Wang Yi13,Wu Di1ORCID

Affiliation:

1. Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province School of Pharmaceutical Sciences Zhejiang Chinese Medical University Hangzhou 310053 China

2. First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310005 P. R. China

3. Zhejiang Rehabilitation Medical Center The Third Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310003 P. R. China

Abstract

AbstractReactive oxygen species (ROS) play an important role in cellular metabolism and many oxidative stress‐related diseases, while excessive accumulation of ROS will lead to genetic changes in cells and promote the occurrence of inflammatory diseases or cell death. Nature‐inspired polydopamine (PDA) with tailored nanostructures emerges as an ROS scavenger and is considered as an effective approach to inflammation‐related diseases. However, the effects of nanoparticle structure on PDA scavenging efficacy and efficiency remain uncovered. In this work, three typical PDA nanoparticles including solid PDA, mesoporous PDA, and hollow PDA are synthesized, and of which physiochemical properties are characterized. Furthermore, their ROS scavenging performance is investigated by in vitro evaluation of radical removal. Among the three nanoparticles, mesoporous PDA is demonstrated to have the highest scavenging capability, mainly due to its specific surface area. Finally, the study on three in vivo inflammation models is constructed. The results confirm that mesoporous PDA is the most potent scavenger of ROS and more effective in reducing reperfusion injury, improving renal function, and preventing periodontitis progression, respectively. Together with the good biosafety and biocompatibility profiles, PDA nanoparticles, mesoporous PDA in particular, can be a promising avenue of ROS scavenging in fight against the inflammatory diseases.

Funder

National Natural Science Foundation of China

China Association for Science and Technology

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3