An In Vitro Model of the Blood–Brain Barrier for the Investigation and Isolation of the Key Drivers of Barriergenesis

Author:

Schofield Christina1,Sarrigiannidis Stylianos1,Moran‐Horowich Alejandro1,Jackson Emma1,Rodrigo‐Navarro Aleixandre1,van Agtmael Tom2,Cantini Marco1,Dalby Matthew J.1,Salmeron‐Sanchez Manuel134ORCID

Affiliation:

1. Centre for the Cellular Microenvironment University of Glasgow Glasgow G11 6EW UK

2. School of Cardiovascular and Metabolic Health University of Glasgow Glasgow G12 8TA UK

3. Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona 08028 Spain

4. Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain

Abstract

AbstractThe blood–brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Models for the study of the physiological processes affecting the BBB, as well as predicting the permeability of therapeutic substances for neurological and neurovascular pathologies, are highly desirable. Existing models, such as Transwell utilizing‐models, do not mimic the extracellular environment of the BBB with their stiff, semipermeable, non‐biodegradable membranes. To help overcome this, we engineered electrospun membranes from poly L‐lactic acid in combination with a nanometric coating of poly(ethyl acrylate) (PEA) that drives fibrillogenesis of fibronectin, facilitating the synergistic presentation of both growth factors and integrin binding sites. Compared to commercial semi‐porous membranes, these membranes significantly improve the expression of BBB‐related proteins in brain endothelial cells. PEA‐coated membranes in combination with different growth factors and extracellular protein coatings reveal nerve growth factor (NGF) and fibroblast growth factor (FGF‐2) caused formation of better barriers in vitro. This BBB model offers a robust platform for studying key biochemical factors influencing barrier formation that marries the simplicity of the Transwell model with the highly tunable electrospun PEA‐fibronectin membranes. This enables the generation of high‐throughput drug permeability models without the need of complicated co‐culture conditions.

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3