Homo‐Dyad with Outer Hydration Layer Approach for Developing NIR‐II Chromophore of High Stability and Water‐Solubility as Injectable and Sprayable Optical Probe

Author:

She Zunpan1,Li Rong1,Zeng Fang1,Wu Shuizhu1ORCID

Affiliation:

1. Biomedical Division State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China

Abstract

AbstractDyes with extended conjugate structures are the focus of extensive design and synthesis efforts, aiming to confer unique and improved optical and electronic properties. Such advancements render these dyes applicable across a wide spectrum of uses, ranging from second‐window near‐infrared (NIR‐II) bioimaging to organic photovoltaics. Nevertheless, the inherent benefits of long conjugation are often accompanied by persistent challenges like aggregation, fluorescence quenching, absorption blueshift, and low stability and poor water solubility. Herein, a unique structural design strategy termed “homo‐dyad with outer hydration layer” is introduced to address these inherent problems, tailored for the development of imaging probes exhibiting long absorption/emission wavelengths. This approach involves bringing two heptamethine cyanines together through a flexible linker, forming a homo‐dyad structure, while strategically attaching four polyethylene glycol (PEG9) chains to the terminal heterocycles. This approach imparts excellent water solubility, biocompatibility, and enhanced chemical, photo‐, and spectral stability for the dyes. Utilizing this strategy, a biomarker‐activatable probe (HD‐FL‐4PEG9‐N) for NIR‐II fluorescent and 3D multispectral optoacoustic tomography imaging is developed, and its effectiveness in disease visualization. It can not only serve as an injectable probe for acute kidney injury imaging due to its high water solubility, but also a sprayable probe for imaging bacterial‐infected wounds.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3