Polyelectrolyte Complex Hydrogels from Controlled Kneading and Annealing‐Induced Tightly Wound and Highly Entangled Natural Polysaccharides

Author:

Chen Shunlan1,Li Dapeng2,Wen Ying3,Peng Gege1,Ye Kexin4,Huang Yiwan15,Long Shijun15,Li Xuefeng156ORCID

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China

2. Bioengineering Department College of Engineering University of Massachusetts Dartmouth North Dartmouth Bristol County MA 02747‐2300 USA

3. Department of Cardiology Renmin Hospital of Wuhan University Wuhan 430060 China

4. Department of Chemistry University College London 20 Gordon St London WC1H 0AJ UK

5. New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base Hubei University of Technology Wuhan 430068 China

6. Hubei Longzhong Laboratory Xiangyang 441000 China

Abstract

AbstractHydrogels usually are fabricated by using monomers or preexisting polymers in precursor solutions. Here, a polyelectrolyte complex biohydrogel (Bio‐PEC hydrogel) made from a precursor dough, by kneading, annealing, and crosslinking the dough of two oppositely charged polysaccharides, cationic chitosan quaternary ammonium salt (HACC) and anionic sodium hyaluronate (HA), photoinitiator (α‐ketoglutaric acid), crosslinker glycidyl methacrylate (GMA), and water of very small quantity is reported. Controlled kneading and annealing homogenized the dough with respect to transforming randomly distributed, individual polymer chains into tightly wound double‐stranded structures, which, upon UV irradiation, covalently sparsely crosslinked into a highly entangled network and subsequently, upon fully swollen in water, results in Bio‐PEC hydrogel, HACC/HA, exhibiting near‐perfect elasticity, high tensile strength, and high swelling resistance. Via the same kneading and annealing, tetracarboxyphenylporphyrin iron (Fe‐TCPP) metal nanoclusters are incorporated into HACC/HA to obtain photocatalytic, antibacterial, and biocompatible Bio‐PEC hydrogel composite, Fe‐TCPP@HACC/HA. Using SD rat models, the efficacy of Fe‐TCPP@HACC/HA in inhibiting Escherichia coli (E. coli) growth in vitro and the ability to promote wound healing and scar‐free skin regeneration in vivo, or its high potential as a wound dressing material for biomedical applications are demonstrated.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3