Releasable, Immune‐Instructive, Bioinspired Multilayer Coating Resists Implant‐Induced Fibrosis while Accelerating Tissue Repair

Author:

Toita Riki12ORCID,Kitamura Masahiro34,Tsuchiya Akira5ORCID,Kang Jeong‐Hun6ORCID,Kasahara Shinjiro3

Affiliation:

1. Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1‐8‐31 Midorigaoka Ikeda Osaka 563‐8577 Japan

2. AIST‐Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory AIST 2‐1 Yamadaoka Suita Osaka 565‐0871 Japan

3. Niterra Co., Ltd. 2808 Iwasaki Komaki Aichi 485–8510 Japan

4. NGK Spark Plug‐AIST Healthcare Materials Cooperative Research Laboratory 2266–98 Anagahora Shimoshidami, Moriyama‐ku Nagoya Aichi 463–8560 Japan

5. Department of Biomaterials Faculty of Dental Science Kyushu University 3‐1‐1 Maidashi Higashi‐ku Fukuoka 812–8582 Japan

6. Division of Biopharmaceutics and Pharmacokinetics National Cerebral and Cardiovascular Center Research Institute 6‐1 Shinmachi, Kishibe Suita Osaka 564–8565 Japan

Abstract

AbstractImplantable biomaterials trigger foreign body reactions (FBRs), which reduces the functional life of medical devices and prevents effective tissue regeneration. Although existing therapeutic approaches can circumvent collagen‐rich fibrotic encapsulation secondary to FBRs, they disrupt native tissue repair. Herein, a new surface engineering strategy in which an apoptotic‐mimetic, immunomodulatory, phosphatidylserine liposome (PSL) is released from an implant coating to induce the formation of a macrophage phenotype that mitigates FBRs and improves tissue healing is described. PSL‐multilayers constructed on implant surfaces via the layer‐by‐layer method release PSLs over a 1‐month period. In rat muscles, poly(etheretherketone) (PEEK), a nondegradable polymer implant model, induces FBRs with dense fibrotic scarring under an aberrant cellular profile that recruits high levels of inflammatory infiltrates, foreign body giant cells (FBGCs), scar‐forming myofibroblasts, and inflammatory M1‐like macrophages but negligible amounts of anti‐inflammatory M2‐like phenotypes. However, the PSL‐multilayer coating markedly diminishes these detrimental signatures by shifting the macrophage phenotype. Unlike other therapeutics, PSL‐multilayered coatings also stimulate muscle regeneration. This study demonstrates that PSL‐multilayered coatings are effective in eliminating FBRs and promoting regeneration, hence offering potent and broad applications for implantable biomaterials.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3