Hierarchically Porous Implants Orchestrating a Physiological Viscoelastic and Piezoelectric Microenvironment for Bone Regeneration

Author:

Zhang Zheng‐Min1,Yu Peng12,Zhou Kai3,Yu Fan‐Yuan4,Bao Rui‐Ying1,Yang Ming‐Bo1,Qian Zhi‐Yong2,Yang Wei1ORCID

Affiliation:

1. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan 610065 China

2. State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610041 China

3. Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China

4. Department of Endodontics State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Stomatology Hospital Sichuan University Chengdu 610041 China

Abstract

AbstractThe extracellular matrix microenvironment of bone tissue comprises several physiological cues. Thus, artificial bone substitute materials with a single cue are insufficient to meet the demands for bone defect repair. Regeneration of critical‐size bone defects remains challenging in orthopedic surgery. Intrinsic viscoelastic and piezoelectric cues from collagen fibers play crucial roles in accelerating bone regeneration, but scaffolds or implants providing integrated cues have seldom been reported. In this study, it is aimed to design and prepare hierarchically porous poly(methylmethacrylate)/polyethyleneimine/poly(vinylidenefluoride) composite implants presenting a similar viscoelastic and piezoelectric microenvironment to bone tissue via anti‐solvent vapor‐induced phase separation. The viscoelastic and piezoelectric cues of the composite implants for human bone marrow mesenchymal stem cell line stimulate and activate Piezo1 proteins associated with mechanotransduction signaling pathways. Cortical and spongy bone exhibit excellent regeneration and integration in models of critical‐size bone defects on the knee joint and femur in vivo. This study demonstrates that implants with integrated physiological cues are promising artificial bone substitute materials for regenerating critical‐size bone defects.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3