Optimization of Vascularized Intestinal Organoid Model

Author:

Wen Zhang1ORCID,Orduno Mariabelen1,Liang Zixie1,Gong Xiangyu1,Mak Michael1ORCID

Affiliation:

1. Department of Biomedical Engineering Yale University New Haven CT USA

Abstract

AbstractVasculature is crucial for maintaining organ homeostasis and metabolism. Although 3D organoids can mimic organ structures and patterns, they still lack vascular systems, limiting the recapitulation of physiological complexities. Although vascularization of organoids has been demonstrated by mixing Matrigel in fibrin, how the mixed gel niche affects endothelial cells (ECs) and organoids remains unclear. Existing protocols rely on fibroblasts to promote vascular network formation. This study explores how varying the ratio of Matrigel in fibrin‐Matrigel co‐gel affects vascular network formation and intestinal organoid growth. A fine‐tuned hydrogel is developed by adding aprotinin and 15% Matrigel in fibrin. Medium for co‐culturing ECs and organoids is modified with basic fibroblast growth factor (bFGF) and heparin. In combination with fine‐tuned hydrogel and modified medium, vascular network formation and organoid vascularization are successfully generated in the absence of fibroblast. Furthermore, structural cues and pore architectures are critical for angiogenesis and vascularization. By incorporating engineered thick collagen fiber bundles into the system, vascular network formation is guided by bundle architectures, enhancing interactions between vascular networks and organoids. The results demonstrate an optimized system that advances tissue and organoid vascularization by combining fiber bundles with fine‐tuned hydrogel and modified medium.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3