Affiliation:
1. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
2. Department of Ophthalmology Shanghai Ninth People's Hospital Shanghai Jiaotong University School of Medicine Shanghai 200011 P. R. China
3. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Shanghai 200011 P. R. China
Abstract
AbstractPhototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) has gradually come into the limelight for oncological treatment due to its noninvasiveness, high specificity, and low side effects. However, upregulated heat‐shock proteins (HSPs) and reactive oxygen species (ROS)‐defensing system such as glutathione (GSH) or MutT homolog 1 (MTH1) protein in tumor microenvironment counteract the efficiency of single‐modality therapy either PTT or PDT. Herein, the well‐defined bismuth telluride nanoplates (Bi2Te3 NPs) are engineered with a high‐performance photo‐thermo‐electro‐catalytic effect for tumor‐synergistic treatment. Upon near‐infrared light illumination, Bi2Te3 NPs induce a significant temperature elevation for PTT, which effectively inhibits MTH1 expression. Especially, heating and cooling alteration caused temperature variations result in electron–hole separation for ROS generation, which not only damages HSPs to reduce the thermotolerance for enhance PTT, but also arouses tumor cell pyroptosis. Additionally, Bi2Te3 NPs conspicuously reduce GSH, further improving ROS level and leading to decrease glutathione peroxidase 4 (GPX4) activity, which triggers tumor cell ferroptosis. Due to the photo‐thermo‐electro‐catalytic synergistic therapy, Bi2Te3 NPs are gifted with impressive tumor suppression on both ectopic and orthotopic ocular tumor models. This work highlights a high‐performance multifunctional energy‐conversion nanoplatform for reshaping tumor microenvironment to boost the tumor‐therapeutic efficacy of phototherapy.
Funder
National Natural Science Foundation of China
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献