Affiliation:
1. Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences Virginia Tech Blacksburg VA 24061 USA
2. Wake Forest Baptist Comprehensive Cancer Center Wake Forest University Winston‐Salem NC 27157 USA
3. Fralin Biomedical Research Institute at Virginia Tech – Carillion Roanoke VA 24016 USA
4. Biodesign Center for Sustainable Macromolecular Materials and Manufacturing Arizona State University Tempe AZ 85287 USA
Abstract
AbstractGlioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy‐resistant glioblastoma stem‐like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol‐Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12‐mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM‐hydrogel interactions in vitro are studied. With a novel dual‐layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Funder
National Science Foundation
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献