Origami‐inspired Bionic Soft Robot Stomach with Self‐Powered Sensing

Author:

Xu Jinsui1ORCID,Xu Boyi2,Yue Honghao1,Xie Zhijie3,Tian Ye2,Yang Fei1ORCID

Affiliation:

1. State Key Laboratory of Robotics and System School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001 China

2. Light Industry College Harbin University of Commerce Harbin 150028 China

3. College of mechanical and electrical engineering Northeast Forestry University Harbin 150042 China

Abstract

AbstractThe stomach is a vital organ in the human digestive system, and its digestive condition is critical to human health. The physical movement of the stomach during digestion is controlled by the circular and oblique muscles. Existing stomach simulators are unable to realistically reproduce the physical movement of the stomach. Due to the complexity of gastric motility, it is challenging to simulate and sense gastric motility. This paper proposes for the first time a bionic soft robotic stomach (BSRS) with an integrated drive and sensing structure inspired by origami and self‐powered sensing technology. This soft stomach (SS) can realistically simulate and sense the movements of various parts of the human stomach in real‐time. The contraction force and contraction rate of the BSRS are investigated with different viscosity contents, and the experimental values are similar to the physiological range (maximum contraction force is 3.2 N, and maximum contraction rate is 0.8). This paper provides an experimental basis for the study of gastric digestive medicine and food science by simulating the peristaltic motion of the BSRS according to the human stomach and by combining the triboelectric nanogenerator (TENG) sensing technology to monitor the motion of the BSRS in real‐time.This article is protected by copyright. All rights reserved

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3