Oxygen Self‐Supplied Nanoplatform for Enhanced Photodynamic Therapy against Enterococcus Faecalis within Root Canals

Author:

Chen Jiawen1ORCID,Zhang Hong1,Zhao Tiancong2,Yu Yiyan1,Song Jiazhuo1,Zhao Yuanhang1,Alshawwa Hamed1,Zou Xinying1,Zhang Zhimin1ORCID

Affiliation:

1. Department of Endodontics Jilin Provincial Key Laboratory of Oral Biomedical Engineering School and Hospital of Stomatology Jilin University Changchun 130021 P. R. China

2. College of Chemistry and Materials Department of Chemistry and Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers Collaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM) Fudan University Shanghai 200433 P. R. China

Abstract

AbstractThe successful treatment of persistent and recurrent endodontic infections hinges upon the eradication of residual microorganisms within the root canal system, which urgently needs novel drugs to deliver potent yet gentle antimicrobial effects. Antibacterial photodynamic therapy (aPDT) is a promising tool for root canal infection management. Nevertheless, the hypoxic microenvironment within the root canal system significantly limits the efficacy of this treatment. Herein, a nanohybrid drug, Ce6/CaO2/ZIF‐8@polyethylenimine (PEI), is developed using a bottom‐up strategy to self‐supply oxygen for enhanced aPDT. PEI provides a positively charged surface, which enables precise targeting of bacteria. CaO2 reacts with H2O to generate O2, which alleviates the hypoxia in the root canal and serves as a substrate for Ce6 under 660 nm laser irradiation, leading to the successful eradication of planktonic Enterococcus faecalis (E. faecalis) and biofilm in vitro and, moreover, the effective elimination of mature E. faecalis biofilm in situ within the root canal system. This smart design offers a viable alternative for mitigating hypoxia within the root canal system to overcome the restricted efficacy of photosensitizers, providing an exciting prospect for the clinical management of persistent endodontic infection.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3