Injectable Conductive Hydrogel with Self‐Healing, Motion Monitoring, and Bacteria Theranostics for Bioelectronic Wound Dressing

Author:

Shan Mengyao12,Chen Xin3,Zhang Xiaoyang1,Zhang Shike1,Zhang Linlin1,Chen Jinzhou1,Wang Xianghong1ORCID,Liu Xuying1ORCID

Affiliation:

1. School of Materials Science and Engineering Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film Technologies Henan Innovation Center for Functional Polymer Membrane Materials Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou 450001 China

2. Sinopec Oilfield Equipment Corporation Wuhan 430070 China

3. College of Food Science and Engineering National Engineering Research Center of Wheat and Corn Further Processing Henan University of Technology Zhengzhou 450001 China

Abstract

AbstractWounds at joints are difficult to treat and tend to recover more slowly due to the frequent motions. When using traditional hydrogel dressings, they are easy to crack and undergo bacterial infection, difficult to match and monitor the irregular wounds. Integrating multiple functions within a hydrogel dressing to achieve intelligent wound monitoring and healing remains a significant challenge. In this research, a multifunctional hydrogel is developed based on polysaccharide biopolymer, poly(vinyl alcohol), and hydroxylated graphene through dynamic borate ester bonding and supramolecular interaction. The prepared hydrogel not only exhibits rapid self‐healing (within 60 s), injectable, conductive and motion monitoring properties, but also realizes in situ bacterial sensing and killing functions. It shows excellent bacterial sensitivity (within 15 min) and killing ability via the changes of electrical signals and photothermal therapy, avoiding the emergence of drug‐resistant bacteria. In vivo experiments prove that the hydrogel can promote wound healing effectively. In addition, it displays great electromechanical performance to achieve real‐time monitoring and prevent re‐tearing of the wound at human joints. The injectable pH‐responsive hydrogel with good biocompatibility demonstrates considerable potential as multifunctional bioelectronic dressing for the detection, treatment, management, and healing of infected joint wounds.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3