Oxygenated Scaffolds for Pancreatic Endocrine Differentiation from Induced Pluripotent Stem Cells

Author:

Huang Hui1,Karanth Soujanya S.1,Guan Ya2,Freeman Sebastian1,Soron Ryan1,Godovich David S.1,Guan Jianjun2,Ye Kaiming13,Jin Sha13ORCID

Affiliation:

1. Department of Biomedical Engineering Thomas J. Watson College of Engineering and Applied Sciences State University of New York (SUNY) at Binghamton New York 13902 USA

2. Department of Mechanical Engineering and Materials Science Washington University in St. Louis St. Louis MO 63130 USA

3. Center of Biomanufacturing for Regenerative Medicine State University of New York (SUNY) at Binghamton New York 13902 USA

Abstract

AbstractA 3D microenvironment is known to endorse pancreatic islet development from human induced pluripotent stem cells (iPSCs). However, oxygen supply becomes a limiting factor in a scaffold culture. In this study, oxygen‐releasing biomaterials are fabricated and an oxygenated scaffold culture platform is developed to offer a better oxygen supply during 3D iPSC pancreatic differentiation. It is found that the oxygenation does not alter the scaffold's mechanical properties. The in situ oxygenation improves oxygen tension within the scaffolds. The unique 3D differentiation system enables the generation of islet organoids with enhanced expression of islet signature genes and proteins. Additionally, it is discovered that the oxygenation at the early stage of differentiation has more profound impacts on islet development from iPSCs. More C‐peptide+/MAFA+ β and glucagon+/MAFB+ α cells formed in the iPSC‐derived islet organoids generated under oxygenated conditions, suggesting enhanced maturation of the organoids. Furthermore, the oxygenated 3D cultures improve islet organoids’ sensitivity to glucose for insulin secretion. It is herein demonstrated that the oxygenated scaffold culture empowers iPSC islet differentiation to generate clinically relevant tissues for diabetes research and treatment.

Funder

National Institute of Biomedical Imaging and Bioengineering

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3