Affiliation:
1. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
2. Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Cambridge MA 02139 USA
3. Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
Abstract
AbstractPrimary hemostasis (platelet plug formation) and secondary hemostasis (fibrin clot formation) are intertwined processes that occur upon vascular injury. Researchers have sought to target wounds by leveraging cues specific to these processes, such as using peptides that bind activated platelets or fibrin. While these materials have shown success in various injury models, they are commonly designed for the purpose of treating solely primary or secondary hemostasis. In this work, a two‐component system consisting of a targeting component (azide/GRGDS PEG‐PLGA nanoparticles) and a crosslinking component (multifunctional DBCO) is developed to treat internal bleeding. The system leverages increased injury accumulation to achieve crosslinking above a critical concentration, addressing both primary and secondary hemostasis by amplifying platelet recruitment and mitigating plasminolysis for greater clot stability. Nanoparticle aggregation is measured to validate concentration‐dependent crosslinking, while a 1:3 azide/GRGDS ratio is found to increase platelet recruitment, decrease clot degradation in hemodiluted environments, and decrease complement activation. Finally, this approach significantly increases survival relative to the particle‐only control in a liver resection model. In light of prior successes with the particle‐only system, these results emphasize the potential of this technology in aiding hemostasis and the importance of a holistic approach in engineering new treatments for hemorrhage.
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献