Photo‐Clickable Triazine‐Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications

Author:

Johansen Åshild1,Lin Jinjian2ORCID,Yamada Shuntaro1ORCID,Mohamed‐Ahmed Samih1,Yassin Mohammed A.1,Gjerde Cecilie1,Hutchinson Daniel J.2ORCID,Mustafa Kamal1ORCID,Malkoch Michael2ORCID

Affiliation:

1. Center of Translational Oral Research (TOR) Tissue Engineering Group Department of Clinical Dentistry University of Bergen Årstadveien 19 Bergen 5009 Norway

2. School of Engineering Sciences in Chemistry Biotechnology and Health (CBH) Department of Fibre and Polymer Technology Division of Coating Technology KTH Royal Institute of Technology Teknikringen 56 Stockholm SE‐100 44 Sweden

Abstract

AbstractThere is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component heterocyclic triazine‐trione (TATO) formulations, which cure at room temperature via thiol‐ene/yne photochemistry. Three ester‐containing thermosets, TATO‐1, TATO‐2, and TATO‐3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days’ incubation the materials covered a wide range of properties, from the soft TATO‐2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO‐3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro‐ and nano‐surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow‐derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.

Funder

China Scholarship Council

Knut och Alice Wallenbergs Stiftelse

Trond Mohn stiftelse

Olav Thon Stiftelsen

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3