Platelet‐Membrane‐Coated Polydopamine Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Repairing Damaged Vessels in Intracerebral Hemorrhage

Author:

Xu Canxin12,Pan Yuanbo23,Zhang Hongchi1,Sun Yuhao1,Cao Yi2,Qi Pengfei2,Li Mingli2,Akakuru Ozioma Udochukwu2,He Lulu2,Xiao Chen1,Sun Bomin1,Bian Liuguan1,Li Juan2ORCID,Wu Aiguo2ORCID

Affiliation:

1. Department of Neurosurgery Rui‐Jin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China

2. Cixi Institute of Biomedical Engineering International Cooperation Base of Biomedical Materials Technology and Application Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS Ningbo 315201 P. R. China

3. Department of Neurosurgery The Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310009 P. R. China

Abstract

AbstractIntracerebral hemorrhage (ICH) has a high morbidity and mortality rate. Excessive reactive oxygen species (ROS) caused by primary and second brain injury can induce neuron death and inhibit neurological functional recovery after ICH. Therefore, exploring an effective way to noninvasively target hemorrhage sites to scavenge ROS is urgently needed. Inspired by the biological function of platelets to target injury vessel and repair injury blood vessels, platelet‐membrane‐modified polydopamine (Menp@PLT) nanoparticles are developed with targeting to hemorrhage sites of ICH. Results demonstrate that Menp@PLT nanoparticles can effectively achieve targeting to the location of intracranial hematoma. Furthermore, Menp@PLT with excellent anti‐ROS properties can scavenge ROS and improve neuroinflammation microenvironment of ICH. In addition, Menp@PLT may play a role in decreasing hemorrhage volume by repairing injury blood vessels. Combining platelet membrane and anti‐ROS nanoparticles for targeting brain hemorrhage sites provide a promising strategy for efficiently treating ICH.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3