Amplified and Specific Staining of Protein Dimerization on Cell Membrane Catalyzed by Responsively Installed DNA Nanomachines for Cancer Diagnosis

Author:

Wang Zhenqiang12,Xie Xiyue2,Jin Kaifei2,Xia Daqing2,Zhu Jing2,Zhang Jixi2ORCID

Affiliation:

1. Department of Pharmacy The Second Affiliated Hospital Army Medical University No. 183 Xinqiao Road Chongqing 400037 China

2. Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No.174 Shazheng Road Chongqing 400044 China

Abstract

AbstractIn situ staining of protein dimerization on cell membrane has an important significance in accurate diagnosis during perioperative period, yet facile integration of specific recognition function and local signal conversion/amplification abilities on membrane surface remains a great challenge. Herein, a two‐stage catalytic strategy is developed by installing DNA nanomachines and employing. Specifically, dual‐aptamer‐assisted DNA scaffold perform a “bispecific recognition‐then‐computing” operation and the output signal initiate a membrane‐anchored biocatalysis for self‐assembly of DNA catalytic converters, that is, G‐quadruplex nanowire/hemin DNAzyme. Then, localized‐deposition of chromogenic polydopamine is chemically catalyzed by horseradish peroxidase‐mimicking DNAzyme and guided by supramolecular interactions between conjugate rigid plane of G‐tetrad and polydopamine oligomer. The catalytic products exhibit nanofiber morphology with a diameter of 80–120 nm and a length of 1–10 µm, and one‐to‐one localize on DNA scaffold for amplified and specific staining of protein dimers. The bispecific staining leads to a higher (≈3.4‐fold) signal intensity than traditional immunohistochemistry, which is beneficial for direct visualization. Moreover, an efficient discrimination ability of the bispecific staining strategy is observed in co‐culture model staining. This study provides a novel catalytic method for controlling deposition of chromogens and paves a new avenue to sensitively stain of protein‐protein interactions in disease diagnosis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3