Affiliation:
1. Department of Orthopedics Shanghai Tenth People's Hospital School of Medicine Tongji University Shanghai 200072 China
2. Shanghai Trauma Emergency Center Shanghai 200072 China
3. Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center Tenth People's Hospital School of Medicine Tongji University Shanghai 200072 China
Abstract
AbstractThe limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real‐time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin‐3‐gallate (EGCG) based metal–phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near‐infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real‐time photothermal intervention and long‐term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Science and Technology Commission of Shanghai Municipality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献