Promoting Diabetic Wound Healing through a Hydrogel‐Based Cascade Regulation Strategy of Fibroblast‐Macrophage

Author:

Jin Nuo1,Wang Zilin2,Tang Xi3,Jin Nianqiang4ORCID,Wang Xiaohong1

Affiliation:

1. Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine China Medical University Shenyang 110001 China

2. Department of Oral and Maxillofacial Surgery, Hospital of Stomatology Jilin University Changchun 130021 China

3. Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province Zhejiang Cancer Hospital Hangzhou 310022 China

4. Stomatological Hospital, School of Stomatology Southern Medical University Guangzhou 510280 China

Abstract

AbstractThe management of diabetic wounds (DWs) continues to pose a significant challenge in the field of medicine. DWs are primarily prevented from healing due to damage to macrophage efferocytosis and fibroblast dysfunction. Consequently, a treatment strategy that involves both immunoregulation and the promotion of extracellular matrix (ECM) formation holds promise for healing DWs. Nevertheless, existing treatment methods necessitate complex interventions and are associated with increased costs, for example, the use of cytokines and cell therapy, both of which have limited effectiveness. In this study, a new type of ruthenium (IV) oxide nanoparticles (RNPs)‐laden hybrid hydrogel dressing with a double network of Pluronic F127 and F68 has been developed. Notably, the hybrid hydrogel demonstrates remarkable thermosensitivity, injectability, immunoregulatory characteristics, and healing capability. RNPs in hydrogel effectively regulate both fibroblasts and macrophages in a cascade manner, stimulating fibroblast differentiation while synergistically enhancing the efferocytosis of macrophage. The immunoregulatory character of the hydrogel aids in restoring the intrinsic stability of the immune microenvironment in the wound and facilitates essential remodeling of the ECM. This hydrogel therefore offers a novel approach for treating DWs through intercellular communication.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3