Mucus and Biofilm Penetrating Nanoplatform as an Ultrasound‐Induced Free Radical Initiator for Targeted Treatment of Helicobacter pylori Infection

Author:

Fan Jinjie1,Dong Yuze1,Sun Yue1,Ji Yalan1,Feng Jie1,Yan Peijuan1,Zhu Yingnan1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research Zhengzhou University Zhengzhou 450001 China

Abstract

AbstractHelicobacter pylori (H. pylori) infection is closely associated with the development of various gastric diseases. The effectiveness of current clinical antibiotic therapy is hampered by the rise of drug‐resistant strains and the formation of H. pylori biofilm. This paper reports a sonodynamic nanocomposite PtCu3‐PDA@AIPH@Fucoidan (PPAF), which consists of dopamine‐modified inorganic sonosensitizers PtCu3, alkyl radicals (R•) generator AIPH and fucoidan, can penetrate the mucus layer, target H. pylori, disrupt biofilms, and exhibit excellent bactericidal ability. In vitro experiments demonstrate that PPAF exhibits excellent acoustic kinetic properties, generating a significant amount of reactive oxygen species and oxygen‐independent R• for sterilization under ultrasound stimulation. Simultaneously, the produced N2 can enhance the cavitation effect, aiding PPAF nanoparticles in penetrating the gastric mucus layer and disrupting biofilm integrity. This disruption allows more PPAF nanoparticles to bind to biofilm bacteria, facilitating the eradication of H. pylori. In vivo experiments demonstrate that ultrasound‐stimulated PPAF exhibited significant antibacterial efficacy against H. pylori. Moreover, it effectively modulated the expression levels of inflammatory factors and maintained gastrointestinal microbiota stability when compared to the antibiotic treatment group. In summary, PPAF nanoparticles present a potential alternative to antibiotics, offering an effective and healthy option for treating H. pylori infection.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3