Ferrous/Ferric Ions Crosslinked Type II Collagen Multifunctional Hydrogel for Advanced Osteoarthritis Treatment

Author:

Wang Lili12ORCID,Chen Xian12,Wang Shenghong3,Ma Jianrui1,Yang Xiaxia12,Chen Hongli1,Xiao Jianxi12ORCID

Affiliation:

1. State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China

2. Gansu Engineering Research Center of Medical Collagen Lanzhou 730030 P. R. China

3. Department of Orthopaedics Lanzhou University Second Hospital Lanzhou 730030 P. R. China

Abstract

AbstractOsteoarthritis (OA) is a highly prevalent and intricate degenerative joint disease affecting an estimated 500 million individuals worldwide. Collagen‐based hydrogels have sparked immense interest in cartilage tissue engineering, but substantial challenges persist in developing biocompatible and robust crosslinking strategies, as well as improving their effectiveness against the multifaceted nature of OA. Herein, a novel discovery wherein the simple incorporation of ferrous/ferric ions enables efficient dynamic crosslinking of type II collagen, leading to the development of injectable, self‐healing hydrogels with 3D interconnected porous nanostructures, is unveiled. The ferrous/ferric ions crosslinked type II collagen hydrogels demonstrate exceptional physical properties, such as significantly enhanced mechanical strength, minimal swelling ratios, and remarkable resistance to degradation, while also exhibiting extraordinary biocompatibility and bioactivity, effectively promoting cell proliferation, adhesion, and chondrogenic differentiation. Additionally, the hydrogels reveal potent anti‐inflammatory effects by upregulating anti‐inflammatory cytokines while downregulating pro‐inflammatory cytokines. In a rat model of cartilage defects, these hydrogels exhibit impressive efficacy, substantially accelerating cartilage tissue regeneration through enhanced collagen deposition and increased proteoglycan secretion. The innovative discovery of the multifunctional role of ferrous/ferric ions in endowing type II collagen hydrogels with a myriad of beneficial properties presents exciting prospects for developing advanced biomaterials with potential applications in OA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3