Optimization of Lactoferrin‐Derived Amyloid Coating for Enhancing Soft Tissue Seal and Antibacterial Activity of Titanium Implants

Author:

Wang Wan‐rong1,Li Jing1,Gu Jun‐ting1,Hu Bo‐wen2,Qin Wen1,Zhu Yi‐na1,Guo Zhen‐xing1,Ma Yu‐Xuan1,Tay Franklin3,Jiao Kai1,Niu Lina1ORCID

Affiliation:

1. National Clinical Research Center for Oral Diseases State Key Laboratory of Military Stomatology Shaanxi Key Laboratory of Stomatology Department of Prosthodontics School of Stomatology The Fourth Military Medical University Xi'an Shaanxi P. R. China

2. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China

3. Department of Endodontics the Dental College of Georgia Augusta University Augusta GA 30912 USA

Abstract

AbstractA poor seal of the titanium implant–soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long‐term success of titanium implants, lactoferrin‐derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin‐derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid‐coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin‐derived amyloid is a dual‐function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3