Micro‐Engineered Heart Tissues On‐Chip with Heterotypic Cell Composition Display Self‐Organization and Improved Cardiac Function

Author:

Cofiño‐Fabres Carla1ORCID,Boonen Tom2ORCID,Rivera‐Arbeláez José M.13ORCID,Rijpkema Minke4,Blauw Lisanne24,Rensen Patrick C. N.4ORCID,Schwach Verena1ORCID,Ribeiro Marcelo C.12,Passier Robert15ORCID

Affiliation:

1. Department of Applied Stem Cell Technologies TechMed Centre University of Twente Enschede 7522 NB The Netherlands

2. River BioMedics B.V Enschede 7522 NB The Netherlands

3. BIOS Lab‐on‐a‐Chip Group MESA+ Institute for Nanotechnology Max Planck Institute for Complex Fluid Dynamics University of Twente Enschede 7522 NB The Netherlands

4. Department of Medicine Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center Leiden 2300 RC The Netherlands

5. Department of Anatomy and Embryology Leiden University Medical Centre Leiden 2300 RC The Netherlands

Abstract

AbstractAdvanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart‐on‐Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user‐friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)‐derived cardiomyocytes (CMs), endothelial (ECs)‐ and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self‐organized miniaturized micro‐EHTs (µEHTs) with a CM‐EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier‐like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.

Funder

Health~Holland

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiac tissue engineering: an emerging approach to the treatment of heart failure;Frontiers in Bioengineering and Biotechnology;2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3